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COMPUTER PROGRAMS FOR PREDICTION OF STRUCTURAL VIBRATIONS

DUE TO FLUCTUATING PRESSURE ENVIRONMENTS

Tsin N. Lee and Wayne L. Swanson
Chrysler Corporation Space Division
Huntsville Operations
Huntsviile, Alabama

Formulations were derived and computer programs were written to calculate the random
vibrational responses of rectangular cylindrical panels cross-reinforced with ribs and stringers
subjected to the fluctuating pressure environments. Three boundary conditions are con-
sidered: four edges simply supported; four edges ciampas; two opposite edges simply sup-
ported and the other two clamped. Special cases of comulete cylinders and flat panels are
included. Either the spectral density cr the one-third-cciave level of the excitation pressure
may be input in any discrete frequencies. Formulaticns are’ according to the normal mode
approach. The responses caiculated are the acceleration, displacement, and stress speciral
densities, overall mean-square and root-mean-square values, All spectral densities are tabu-
lated and plotted. New expressions for the joint acceptance of all mede combinations for
different correlation functions are derived. Both local responses at any point and the
average responses over the complete panel are calculated. Comparison of calculated results
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with test data shows good agreement.

INTRODUCTION

The purpose of this project was to deveiop computer pro-
grams to calculate the random vibrational responses of rec-
tangular cylindrical sheii paneis cross-reinforcad with ribs
and stringers. The boundary conditions considered are four
edgos simpiy-suppu ed, four odges clampad. and two oppo-
site edges simply-supported wh lle other two clamped, Spe-
cial cases of complete cylinders and flat panels are included.

A total of 2leven computer programs have been developed.
The main program RANDGM contains the formulations for
the three boundary conditions and wiil calcuiate the re-
sponses for eny one of the boundary conditions. For accu-
rate results and large frequency range, programs were written

for each boundary condition to perform special investigations.

The one-third-octave spectrum of the excitation pressure
is input in any discrete frequencies. Any excitation pressure
spectrum of any shape can be input. This improves the simu-
lation of the excitation pressure field. The excitation spec-
trum is converted into pounds-per-square-inch squared per
Hertz. Excitation pressure for each data point frequency is
ebtained by interpolation. The excitation fressure spectrum
is plotted both in decibel scale and in {psi)< per Hertz.

The formulations are according to the normal moede ap-
proach. Both Alan Powell’s [1] joint acceptance and Y.K.
Lin‘s [2] cross spectral density of the generalized force are
used in the formulations. The relation of these two quanti-
ties is given. The analytical expressions cf these two guanti-
ties for all mode combinations for two correlation functions
are deriverl. One correlation function is expenentiaily de-
caying with separation distance and frequency whiie the
other is a cosine function with exponentiatly decaying am-
p}itude Separate computer programs are written to study

the joint acceptance and the cioss sphctra! density of the
aenaralized force.

| e

Contributions of both main terms and cross terms are
summed to obtain the rasponses. The one-nth-octave band-
width is used for frequency increment to save computer time
2nd yield smooth response spectral density plots. The fre-
guency range for the spectrum is 5600 Hertz or more. Up to
625 terms are summied to give ihe response spectral density
at each data point. More tharn 1000 date points can be czal-
cuiaesd foi oach resnonsa snactral density plot. The responses
are caiculated as the displacement, the acceisration, and s
stress spectral densities. Mean-square and root-mean-square
values are calculated by numerical integration. Response
spectral densities are tabuiated and piotted with the root-
mean-square value printed at the top of the piot. The pro-
grams will apply when either the complete panei or a portion
is exposed to the excitation pressure. Both local responses
at any point and average responses over the whole panel can
be calculated.

In one of the programs, the acceleration spectral density
is expressed in decibeis referenced gravity acceleration and
the vibro-acoustic transfer function is calcuiated as the accel-
eration spectral density minus the excitation. This is useful
for the investigation of the transfer function of structures,

Separate programs are written to investigate the contribu-
tion of cross terms of the total response. it is found that the
cross terms thouah do not contribute very much to the mean-
square response, they do affect the shape of the response
spectral density 1o a certain degree.

Natural frequencies of the panel are calculated in the pro-
grams. These frequency equations are newly derived or modi-
fication of those availakie in the literature. For paneis of
uniform thickness, these equations are the same as those in
the literature. For cylindrical shell panels cross-reinforced
with stiffeners, no frequency equations can be found in the
literature that can be advantagzsously used in the programs.

These newly derived eguations though approximate in nature,
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yet yield reasonable results. The frequency equations ac-
count for the boundary conditions, the rigidity of the
stiffeners, and the curvature of the shell. They are not
very complicated so they can be incorporated into the
computer programs without requiring a large amount of
computer time.

A program is written to calculate the modal density and
the total number of natural frequencies up to a certain
range. This program is useful in the investigation of dynamic

“characteristics of structures.

By utilization of the developed computer programs, an
investigation on the effect of boundary conditions on the
responses is performed. It is found that the more rigid
the boundary condition, the less the displacement spectral
density and the jarger the acceleration spectrai density at
resonance. The root-mean-squate displacements for the three
boundary conditions are not much different. Estimations
of responses are made by the spectral density at fundamental
mode. It is found that the fundamental mode contributes
up to 50% of the mean-square responses, and the second
mode contributes more to the acceleration than the displace-
ment response.

Comparison of computer results with experimental data
from project, the Chrysler Huntsville Operations was conduct-
ing for Marshall Space Flight Center, shows good agreement.

Only important formulations are given here and details of
the equations will be found in the given references.

NOMENCILATURE

Aq Decay constant along x-axis
Ay Decay constant along y-axis
Ajcmn See eq. (15)

Bjkmn See eq. (15

Cjkmn See eq. (15)

Dy Rigidity, eq. (2)

Dy ) Rigidity, eq. (2)

E Young’s modulus of panel skin
E’ Young’s modulus of stiffeners
ij(;) Normal made

H Rigidity, eq. (2)

ij Frequency response function
Hin ) Conjugate of Hp,,

l-l ~ Moment of inertia of one length-direction

stiffener with respect to neutral axis

12 Moment of inertia of one width-direction
stiffener with respect to neutral axis

lx,ly lntegrgls, eq. (33)

H See equation (10}

jm"fm"kn"!}n
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St f)
S (7.5)
Sy o)

Q. .If)
Tarartd

Ty (r.f)
X;(x)
Yily)
a

a1

b

bl

h’

h1=h+h2

ile,mn

Cross spectral density of generalized force

Normalized cross spectral density of gen-
eralized force

Joint acceptance

Wave number

Excitation overall pressure level in db
Smeared-out mass per unit area
Modal mass

See egs. (30), (31) and k32)

Area of panel

Area of panel subjected to excitation
Excitation spectrai density in db/Hz
Excitation spectral density in psilez

Acceleration spectral density in db ref-
erenced g

Displacement speciral density in in2/Hz
Acceleration spectral density in gz/Hz

Stress spectral density in psiz/ Hz

Nno.third.nrtave aveitatinn nraceuras lovel
ne.gnirad-nctave eveotation pracours loval

in db

Vibro-acoustic transfer function in db
See eq. (7)

See eq. (7)

Radius of shell

Spacing of width-direction stiffeners
Circumferential width of panel

Width of panel subjected to excitation
Spacing of length-direction stiffeners
Speed of sound in medium
Frequency of Hertz

Gravity acceleration

Thickness of panel skin

Smeared-out thickness of stiffeners
Height

Largest height of stiffeners at’ {see
figure 1)

Mode indices




£ Axial length of panel

£ Length of panel subjected to excitation

n One-nth-octave increment

pg Overall mean-square pressure in psi2
Bl a,.

r Position vector

w(;) Root-mean-square displacement

w2(r) Mean-square displacement

XY Cartesian coordinates of r
“ij See eq. (8)

- -

¢pp(r1,r2,w) Correlation function

‘I’pp(w) Excitation spectral density in psiZ/rad/sec
q)ww(—':'w) Displacement spectral density in in2/rad/sec

q’w\;(,(?,w) . Acceleration spectral density in in2/sec4/

rad/sec

® aa G, o Stress spectral density in psiz/rad/sec
04,0 See eq. (12)

72(7) Constant to convert displacement spectral

density into stress
ik Damping ratio

1 Separation distance along y-axis

v Poisson’s ratio

3 Separation distance along x-axis

o] Mass density of panel skin

p’ Mass density of stiffeners

-y P ..

e {rq.ro) Correlation coefficient

w Frequency in rad/sec

w jk Natural frequency in rad/sec

FREQUENCY EQUATIONS

The frequency equations are newly derived and modifica-
tion of those available in the literature. The expressions of
frequency equations are different for lower modes and higher
modes and boundary conditions. Detail expressions and deri-
vation of the frequency equations are given in[3]. Typical
one for higher modes of two opposite edges simply-supported
and other two clamped panel is as follows:

Dx(%>4 + Dy(k +b1/2>4

1)2 (k + 1/2) [(k + 1/2) - 2/)
i

2
wjk=lf_

N

+2H(

b2
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+ Eh 1/2
9 4 { i 2 (/z)z] 2
+ N 1
a“ 1 <k+ 1/2> b (1)
jl=23, ..
Refer to Figure 1 for geometric dimensions:
End  Ely
x=. T ot -
12(1-v2) 1
End  Ely
Dy=——7 +
o203 A
Eh
H= —— (2)
12(1-v2)

STIFFENERS

a /

Y\IEL SKIN h

e,

STIFFENER

FIGURE 1. GEOMETRY OF RECTANGULAR CYLINDRI-
CAL SHELL PANEL CROSS~REINFORCED
WITH STIFFENERS

It is seen that the effects of the stiffeners are accounted for
by the quantities D, and Dy, and the influence of the radius
is expressed by the last term in the equation. When the rigid-
ities of the stiffeners approach zero, the frequency equation
reduces to that of unstiffened panel. As the radius approaches
infinity, the frequency equation is that of flat panels.

CORRELATION FUNCTIONS

The correlation of the excitation pressure field is repre-
sented by the following two correlation coefficients:

01(§)=exp(—A1K§) (3

Po(E) = exp(-AgK £) cos (KE) (4)
For spatial homogeneous pressure field, the cross spectral
density functions of the excitation corresponding to the
above correlation will be:-

"’.pp('r],_r’z, w = ¢ (w) exp (-A7KE) exp (-AgKn) (B)




®pp(?1'?2'@ =

q’pp(w) exp (-AqKE) cos (KE) exp (-A5Kn) cos (Kn)

where (6)
&= |xq-xz
n=lyg- Y2 |
NORMAL MODES
Normal modes are represented by
ij(l’) = Xj(X)Yk(Y) (7) A

where Xj and Yy are functions of x and y respectively. Ex--
pressions for these functions for different boundary conditions
are given in[3]. Following is a typical one for the higher
modes of the four edges clamped panel.

Xj(x) = cosh Xj - €OS Xj = sinh X + sin Xj

ji=2,3.. (8)
o _li+1/2)x
Xj = 7

JOINT ACCEPTANCE AND NORMALIZED CROSS SPEC—
TRAL DENSITY OF GENERALIZED FORCE

Analytical expressions for the joint acceptance and the
cross spectral density of the generalized force are derived for
all mode combinations for two different correlation functions.
Formulations for numerical caleulation of these quantities are
developed for any correlation funetion and mode shape. The
cross spectral density of the generalized force is defined[2].

Yiemn =11 ¢ pp(F172.0) FieFq) Finq(fy) diy oty @
For the four edges simply-supported panel and the excitation
cross spectral density functions of eqs. (5) and (6), the ex-
pressions for Iy ... have been obtained in closed forms. For
the latter spec{ral density function, the complete expressions
cover nine pages and can be found in[3]. The expressions for
the former density function are as follows.

likmn = (B2)2 @0, () Ly forj=m, k=n
= 02)2 8, () i lin forj=m, k#n
=820, @) Lo, forj#mk=n

= (6£)20 1 (@) il fori#m,k#n

(10)
where
i ‘0122 k + 1
kn® T,
@ 22 + (k)2 Oé22 + (r.n'.)?
2+ [0 4 ()] exp ()
+ (kn}{nx) l ] 2 fork=n

[OLZZ T (kﬁ)z} [a22 + (an)z]
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2+ [(—nk“ + (-1>"+"J exp (<)

en = (kA {nn) . p
kn [%2 + (k )ZJ [azz + (nﬁ)z}
[k
2(n-k)

(__1)n+k_1

+
2{n+k)

2 + (k)2 |

[
n kg kg

¥ for k
024 2 | 200 T 2l | #n
- (11)

' W

= 2 d. = b = —
G =AKE @p=AjKb K== (12)

Replacing k by j, n by m, and a5 by ¢4 in the above expres-
sions gives 'jm and ljfm.

The normalized cross spectral density of the generalized
force of the excitation is defined as

1.
~ jkmn
I e (13)
jkmn~ o
s q)PP(w)

where the area of the panel isS=b £

The relation between the joint acceptance and the normalized
cross spectral density of the generalized force is given by

~

Jikmn = ljkmn €05 X Tj = Tmp) (14)
where
A.
jkmn
cos W(T:), = T, ) = —emer
Jk‘ mn Cjkmn
Ajkmn = [1 - (wpik)z] [1 - (w/wmn)zJ
+ 4§jkg mn Jl(“ﬁk“’mn)
cﬁ(mn = Aj%(mn + Bﬁ(mn
Bjkmn = 2 { [1 - (“’/“’jk)zl En/“mn
-[1- (w/wmn)z]g}kw/wjk] (5]

It is seen that Tjkjk and "jk'k are identical. Computer Program
JARSR 1 was written to cal’culate l: and J; . Figures

. jkmn jkmn
2, 3 and 4 are typical plots.

EXCITATION PRESSURE DATA

The excitation spectral density in psi2/rad/sec is given by

SEE(f) - 170.576

10 {16}

ool =2 [10]
The excitation spectral dens&y in decibels/Hertz is given by
Spp(f) = 83,4(f) - 10 logyg (0.231571) (17}

where Sq_4(f) is the one-third octave excitation pressure level
in decibels.
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FIGURE 2. JOINT ACCEPTANCE, EXPONENTIALLY
: DECAYING CORRELATION FUNCTION,
MODE INDICES: 1,1, 1,3

PROGRAM JARSR1

JOINT ACCEPTANCE

, FREQUENCY (Hz}

FIGURE 3. JOINT ACCEPTANCE, SINUSGIDAL DECAY-
ING CORRELATION FUNCTION MODE
INDICES: 1,1,1,1

The excitation spectral density in (psi)Z/Hertz is given by
1 —
Spp(f) =29 pp(“) (18)

The relations between the overall mean-square pressure and the
the overall pressure fevel of the excitation are:

L,/10
pZ = 8.75526 x 10718 [10] o (19)
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PROGRAM JARSR1
L

NORMALIZED CROSS SPECTRAL DENSITY OF GEN. FORCE
' '

- FREQUENCY (Hz)

FIGURE 4. NORMALIZED CROSS SPECTRAL DENSITY
OF GENERALIZED FORCE, SINUSOIDAL DE-
DECAYING CORRELATION FUNCTION,
MODE INDICES: 1,1,1,3

and
L, = 170.576 + 10 logyq (p2) (20)
where
2 - . w2
pg = mean-square pressure in {psi)
L. = excitation overail pressiis iovel
in decibels referenced 0.00002
Newton/meter

RESPONSES AT ANY POINT

-, The _disPIacement response spectral density at any point
r{x,y} is given by

o, (Fw) =20

ww ppl)  *

|
jk,mn ijan{Hikl ‘H?nn[‘]jkmn

(21}

The magnitudes of the complex frequency response functions
and their complex conjugates are given by

lij‘ = Mfk1 [(wzjk ~w2)2 4 (ZEjkwjkw)z -1/2 (22)
‘The modal mass is given by
My = [ MFZ  oF (23)
The mass distribution per unit area is:
M=ph+0'h' (24)
The mean-square displacement is given by

w2(i) =/ By (1, 0)d 0 (25)

Sk




The ﬁoot mean-square displacement is given by the square root
ofw

The acceleration response spectral density is given by
¢ w‘;\;(’r‘,w) =l (Fw) (26)
When the acceleration spectral density is in mz/sec4/rad/sec
the acceleration response spectral density in g%/Hertz is given
by
Syt f) = 4215093 x 10750 7 w) (27)
The acceleration spectral density in decibels referenced “g"is
Suglt ) = 10 logqg [sww(?,f)] 28)
The stress response spectral density is given by
ooft, ) = 4 2(0% (P02 (29)

The factor to convert the displacement response into stress
response is given by

72(;5 - (Eh—])z ] sz + sz (30)
4{1-v2) Q2

w
where
® 2 2 2
a=zr 2 [(.m ro{2)
o mn [ £/ b/
=1,3. —— o
sin £52 sin.'-&‘—g’
) 4 2 4
m mn n
D (F) +21 (F2) + o, (B)
2 2 2
hod T ny
i 2t
QV A mn (b) "7
=13,
sin mz’( smﬂ-‘gl'
4 2 4
m ‘mn ALl 1
D« (%) +24 (F5) +0,(3) @1

sin L“-zi’i sin XY

= 7
Oy T{g"__mn{Dx(%)‘lx“ZH (%)2* 0, <%)4] (32)

AVERAGE RESPONSES

The average response over the whole structure is obtained
by integrating the response over the structure and dividing
the result with the area of the structure. Detail derivation of
the formulas is given m[3) The average displacement spectral
density is

) =829 @ % Ly i 12 ik (33)

where the expressions for I, and l for different boundary
conditions are as follows:

Four Edges Simply-Supported Panels:

=1 =1
l—l-—-:—z- (34)

x 'y

Four Edges Clamped Panels:

L (1) = Iy(1) = 1.5056pt -1+ L 3 sinh 2 (1.50567)

5056 [(

-sinh? (1.50561) - 2 exp (~1.5056 7()} (35)
= 3 [(1 Yo)x ~ 1+‘% sinh 2 (j + %)«
(i+%)
=sinh2 (j + %) 7 - 2(-1)1* T exp {-(j +%) HI}
. i=2,3,.. (36)

Iy(k) is given by eq. (36) with j replaced by k.

Two opposite edges simply-supported while other two
clamped:

x (37)

N

ly(k) is given by eqs. (35) and (36) with j replaced by k.
ONE-NTH OCTAVE FREQUENCY INCREMENT

In the calculation of the response spectrum as a funetion of
frequency, uniform frequency increment is not convenient,
because when the spectrum is plotied with the frequency in
igariiaic scale, the points will be too close in high frequency
and too separated in low frequency. In order to obtain good
plots and save computer time, it is convenient to use one-nth-
octave frequency increment.

The interval from frequency fq to fo will be onie-nth oc-

tave if
£ n
<—Z> =2 (38)
4

The geometric mean frequency of fqand fyis

£= (£4f,)% (39)

It can be shown that the bandwidth of the one-nth octave
band is

fp-11=D,f= Difq (40)
where the one-nth-octave bandwidth constants are given by
i
D,=2%"-2 2n (41)
1
DL=2 n.1 {42}

Some values of Dj, and Dy, forn from 1 to 50 are as follows.
Note that when n equals to 1, 2, and 3, the values of Dy, and
D are the corresponding one-octave, one-hatf-octave and
one -third-octave bandwidth constants.
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TR,
Valueof n Value of D’ Value of D
1 1 0.707107
2 0.41421 0.348317%
3 0.25592 0.231563
10 0.07177 0.0693286
20 0.03526 0.0346591
30 0.02337 0.0231054
40 - 0.01748 0.0173289
50 0.01359 0.0138631

When the one-nth-octave bandwidth is used for frequency in-
crements, the expression for the number of data points will be

f.
log L
=n fo (43)
i=n.—2
gz ‘1
where fo and fj are the initial and final frequencies respectively.
For example
n=33
f,=5
fj = 5000

Substituting into eq. (43) gives the number of data points
i=331
VIBRO-ACOUSTIC TRANSFER FUNCTION
The vibro-acoustic transfer function at any point of a struc-
ture is defined as the ratio of the response to the excitation.

When the response and the excitation are expressed in decibﬁis,
the vibre-acoustic transfer function in decibels at any pointr

wiit e e eaciiation i decibels ivinus the response ii
decibels:
~r -
Tl = Syqlr.0) - 870 (44)
-
Tv-‘-,(r,f) = Vibro-acoustic transfer function in decibels

with excitation pressuie referenced 0.00002
Newton/meter2 and acceleration response
referenced g

Swg(r,f) = Acceleration spectral density in decibels
referenced g given by eq. (28)

pr(f) = The spatial homogeneous excitation spectral
density in psi“/Hz given by eq. (18)

Program RSRPC2 is written to investigate the vibro-acoustic

transfer function of four edges simply-supported rectangular

cylindrical shell panels cross reinforced with ribs and stringers.

Typical plots of this program are shown in Figures 5 and 6.

COMPUTER PROGRAMS AND RESULTS

1. Program RANDOM

Program RANDOM [4] is a combination of the three pro-
grams RSRPC1, RFRPC1, and RSFRP1. With this program a
single loading of the input data will be sufficient to obtain the
responses of a rectangular cylindrical shell panel cross-
reinforced with stiffeners and subjected to three boundary
conditions: all edges simply-supported, all edges clamped, and

PROGRAM RSRPC2
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FIGURE 5. DECIBEL SCALE ACCELERATION SPECTRAL
DENSITY AT CENTER OF SIMPLY-SUPFORTED
CURVED RECTANGULAR PANEL CROSS-
REINFORCED WITH STIFFENERS

PROGRAM RSRPC2
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FIGURE 6. VIBRO-ACOUSTIC TRANSFER FUNCTION
AT CENTER OF SIMPLY-SUPPORTED
CURVED RECTANGULAR PANEL CROSS-
REINFORCED WITH STIFFENERS

two opposite edges simply-supported with other two clamped.
Controls are provided to run any one of the boundary condi-
tions,

Input data for this program are (a) the material constants,
the geometric dimensions and properties of the shell panel
and stiffeners, (b) the one-third-octave spectrum of the exci-
tation pressure, {c) x and vy coordinates of the point of interest
and {d) some control constants,

’




The output data of this program include:
a. All the input data with nomenclature.

b. The input one-third-octave spectrum of the excitation
pressure, this excitation spectrum is copverted into spectral
density both in decibel/Hertz and (psi)z/Hertz, tabulated and
plotted.

c. Natural frequencies of the panel both in Hertz and
radian/second.

d. Spectral densities of displacement in (inch)z/Hertz, of
stress in (psi)~/Hertz, of accelergtion in g%/Hertz and the ex-
citation spectral density in (psi)“/rad/sec. In addition to
tabulation, all three spectral densities are plotted. Typical
plots are shown in Figures 7, 8, and 9.

PROGRAM RFRPC}_

ACCELERATION G SQ/HZ

FREQUENCY (Hz}

NOTE: NUMBERS AT PEAKS INDICATE MODE INDICES AND FREQUENCIES.

FIGURE 7. ACCELERATION SPECTRAL DENSITY AT
CENTER OF FOUR-EDGES CLAMPED
CURVED RECTANGULAR PANEL CROSS-
REINFORCED WITH STIFFENER

e. The mean-square and the root-mean-square values of
responses and excitation..

f. Constants QX, Q,,, and. and the constant 72 to con-
vert the displacement\épectral ensity into stress spectral

density. ) .

g. Some values of the joint acceptance square for all com-
binations of modes.

2, Programs RSRPC1, RSRPC2, RSRPC3, and RSRPC4

These four programs are written to calculate the responses
of the simply-supported cylindrical shel rectangular panel
cross-reinforced with ribs and stringers for various specific
purposes, Input data for these programs are the same as
Program RANDOM. The output data for these four pro-
grams are the same as Program RANDOM with extra output-
for each individual program.

ROOT-MEAN-SQUARE RESPONSE = 0.02024 in n o= 33 PROGRAM RSRPCY

e =4
- }‘ —
s f
I
i

DISPLACEMENT INCH SQ/HERTZ

FREQUENCY (Hz)

FIGURE 8. DISPLACEMENT SPECTRAL DENSITY AT
CENTER OF FOUR EDGES SIMPLY-
SUPPORTED CURVED RECTANGULAR
PANEL CROSS-REINFORCED WITH
STIFFENERS

ROOT-MEAN-SQUARE RESPONSE = 305.2psi n = 33 PROGRAM RSFRP1
fgd

STRESS SPECTRAL DENSITY PSI SO/HERTZ

FREQUENCY (Hz)

FIGURE 9. STRESS SPECTRAL DENSITY AT CENTER
OF TWO OPPOSITE EDGE SIMPLY-
SUPPORTED AND OTHER TWO CLAMPED
RECTANGULAR CURVED PANEL CROSS-
REINFORCED WITH STIFFENERS

Program RSRPC1T calculates the spectral densities of the
displacement response in (inch}4/Hertz, the stress response
. N . . .
in {psi}“/Hertz, and the acceleration response in g*/Hertz.
Therefore the output data are identical with Program
RANDOM run in the case of ail edges simply-supported.




In addition to those as in Program RSRPC1, the output
data of Program RSRPC2 include the acceleration spectral
density in decibels referenced gravity acceleration and the
vibro-acoustic transfer function as a function of frequency.
Both the transfer function and the decibel scale acceleration
spectral density are plotted. (See Figures 5 and 6.}

program RSRPC3 is designed to investigate the contribution
of the cross terms to the responses. Both the responses of all
terms summation and cross terms neglected are tabulated and
plotted for comparison. Typicai plots of this program are
shown in Figures 10 and 11.

Program RSRPC4 is a modification of Program RSRPC1 to
calculate responses at any point of the structure and the
average response over the whole structure. Typical plot of
this program is shown in Figure 12.

ROOT-MEAN-SOUARE RESPONSE = 3623 g  © = 50  PROGRAM RSAPC3
[WRREI L1 1 T

il

130-0

10702

ACCELERATION GZ/HZ

FREQUENCY [Hz}

FIGURE 10. ACCELERATION SPECTRAL DENSITY, ALL
TERMS SUMMATION, AT x=2/4=11.87 in,,
y =hb/2=23.187 in.

3. Program RFRPC1 and RFRPC4

These programs are written to calculate the vibrational
responses of the four edges clamped cylindrical shell rectangu-
{ar panel cross-reinforced with ribs and stringers, The input
data for these programs are the same as Program RANDOM.
The output data for these programs are essentiaily the same
as Program RANDOM except Program RFRFC4 also gives
average responses over the whoie panel.

Program RFRPC1 calculates and glots spectral densities of
the displacement response in {inch)“/Hertz, the stress re-
sponse in (psi)*/Hertz, and the acceleration response in g</
Hertz. Therefore, the output data are identical with Program

. RANDOM run in the case of all edges clamped, except the
frequency range can be higher and the frequency increment
can be smaller,

Program RFRPC4 is a modification of Program RFRPC1.
In addition to the output of Program RFRPC1, Program
RFRPC4 calculates the average responses over the whole
structure.
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CROSS TERMS NEGLECTED, AT
x=£/4=11.87 in.,y=b/2=29.187 in. "
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4, Programs RSFRP1 and RSFRP4

These programs are written to calculate the vibrational
response of the two opposite edges simply-supported while
other two clamped rectangular cylindrical shell panel cross-
reinforced with ribs and stringers. The input data for these
programs are the same as Program RANDOM. The output
data for these programs are the same as Program RANDOM
except that Program RSFRP4 also calculates the average
responses over the whole panel.
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Program RSFRP1 calculates and plots the spectral densities
of the displacement response in {inch)</Hertz, the strese re-
sponse in (psi}¢/Hertz, and the acceleration response in g/
Hertz. Therefore, the output data are identical with Pregram
RANDOM run in the case of two opposite edges simply-
supported while other two clamped, except with higher fre-
quency range and smaller frequency increment,

Program RSFRP4 is a modification of RSFRP1. In addi-
tion to calculating local responses at any point of the structure,
Program RSFRP4 also calculates and plots average responses
over the whole panel.

B. Program JARSR1

This is a computer program to study the correlation coeffi-
cient as a function of separation distance, the joint acceptance
and the normalized cross spectral density of the generalized
force as a function of frequency for various correlation func-
tions. Typical plots of the joint acceptance and the normai-
ized cross spectral density of the generalized force are shown
in Figures 2, 3and 4,

6. Program NFUOP1

Program NFUGOP1 is to calculate the total number of modes
and the modal density. The input data to this program are the
material constants, the geometric dimensions and properties
of the structure required in the frequancy equations. The
output data of this program are the tabulated and plotted
number of mades and the modal density as a function of fre-
quency. Sample results are given in Figures 13 and 14. The
analysis of the number of modes and modal density is useful
in the evaluation of the frequency equations. It enables the
structure engineer to determine the accuracy and the behavior

.of the frequency equations. This program can be modified to

apply to any structure.

PANEL DATA: LENGTH = 47.5 INCHES YOUNG'S MODULUS = 10 x 108 Ibf/in?
WIDTH = 58.4 INCHES POISSON'S RATIO = 0.287
THICKNESS = 0.75 INCH.
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FIGURE 14. MODAL DENSITY OF A SIMPLY-SUPPORTED
UNIFORM RECTANGULAR PANEL

COMPARISON OF COMPUTED RESULTS WITH TEST
DATA

The developed computer programs have heen used in the
research project which Chrysler Huntsville Operations con-
ducted for Marshall Space Flight Center under Contract No.
NAS8-21425. The object of this project is to develop com-
parative analysis of acoustic testing techniques and to deter-
ming the time Tor acoustic Gualilivation tesi ad ieveis Oliher
than specified level. Comparison of computed results with
test data shows good agreement,

One of the test specimens in Project NAS8-21425 was a
4in. x 13 in., 0.2 in. thick aluminum fiat plate. The plate
was knife-edged supported on four sides and was subjected
to high ievel acoustic pressure until fatigue failure occurred,
The input spectrum of the acoustic pressure is shown in Fig-
ure 15. Figure 16 shows the calculated acceleration spectral
density compared with test data at location 9, the coordinates
of which are x = 6.5 inches and y = 1 inch.

CONCLUSIONS
1. In the calculation of random structural vibrational re-
sponses due to the fluctuating pressure environments by the
normal mode approach, the important factors that have to be
determined are:
a. The normal modes

b. The natural frequencies

c. The joint acceptance or the cross spectral density of
the generalized force which in turn depends on:

(1} The normal modes
(2) The correlation properties of the pressure field

(3) The spectral density of the excitation pressure.
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2. For simple structures, the determination of the mode
shapes and frequencies can be obtained to a certain degree of
accuracy. For complex structures, the mode shapes and fre-
quencies are difficult to determine in general.

3. For simple pressure fields, the correlation properties can
be obtained analytically. The correlation properties of com-
plex pressure fields will depend on experimental data.

e SRS RNERON I : > ; i

4. Any discrepancy of the factors mentioned above will
affect the computed results.

5. To develop computer programs for the calculation of
these random vibrations, the task is to search or develop the
necessary frequency equations, the normal modes, the ana-
lytical expressions for the correlation properties and the
joint acceptance. The accuracy of these quantities shouid
be consistent. When these quantities are incorporated in the
formulations of the programs, the required computer time
should be moderate as to make them practical for use. Such
task has been done in this project.

6. One of the important features of the computer programs
developed here is that any shape of the spectrum of the exci+
tation pressure can be input into the programs. Thus, the
simulation of the excitation will be as accurate as the spectral
analysis of the random pressure.

7. The diécrepancy in the determination of the natural
frequencies will affect the response spectrum to some degree,
while it will not affect the overall mean-square response very
much.

8. It is well known that the determination of the damping
properties of structures is very difficult. By utilization of the
developed computer programs and the results of test data,
the damping properties of structures can be determined. This
is another application of these programs.
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DISCUSSION

Mr. Lyon (Bolt Beranek & Newman):
What happens to the value of response of your
test structures as the internal damping goes
to zero?

Mr. Lee: We have not tried it. Iused
four percent damping to obtain my results.

"Mr. Lyon: One of the major results of
all the work that has gone on in sound-
structure interaction in the last ten years has
shown that there is a finite upper limit to the
response, even in the absence of internal
damping which is associated with an energy
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sharing between the sound field and the struc-
ture. Therefore, since radiation damping in
some of these structures can be an important
part of the total damping, I would question
whether or not one can infer the internal
damping from a comparison of observed
response with the calculations.

Mr. Lee: I think the damping here
simply included the internal damping as a part
of the radiation damping. That is why we have
to use four percent or six percent damping.
Ordinarily, structural damping is less.




